

FGFR1 (FLT2), Active

Recombinant protein expressed in Sf9 cells

Catalog # F04-11G-10

Lot # 1361-1

Product Description

Recombinant human FGFR1 (399-822) was expressed by baculovirus in Sf9 cells using an N-terminal GST tag. The gene accession number is NM 023110.

Gene Aliases

CEK, FLG, FLT2, KAL2, BFGFR, C-FGR, CD331, N-SAM

Concentration

0.1µg/µl

Formulation

Recombinant protein stored in 50mM Tris-HCI, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

Storage, Shipping and Stability

Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Stability is 1yr at -70°C from date of shipment. Product shipped on dry ice.

Scientific Background

FGFR1 (also known as FLT2) is a member of the Fibroblast Growth Factor Receptor family that constitute a family of four membrane-spanning tyrosine kinases (FGFR1-4) which serve as high-affinity receptors for 17 growth factors (FGF1-17). The FGF Receptor family plays an important role in multiple biological processes, including mesoderm induction and patterning, cell growth and migration, organ formation and bone growth (1). FGFR1 is alternatively spliced generating multiple splice variants that are differentially expressed during embryo development and in the adult body (2).

References

- Xu, X. et al: Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res. 1999 Apr;296(1):33-43.
- Groth, C. et al: The structure and function of vertebrate fibroblast growth factor receptor 1. Int J Dev Biol. 2002;46(4):393-400.

Purity

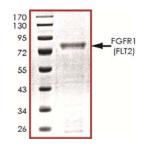
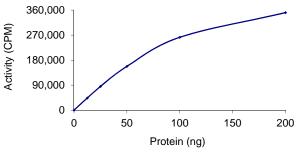
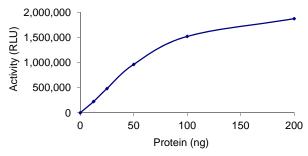



Figure 1. SDS-PAGE gel image

The purity of FGFR1 was determined to be >90% by densitometry, Approx. MW 73kDa

Specific Activity


Figure 2. Radiometric Assay Data

The specific activity of FGFR1 was determined to be **184nmol** /min/mg as per activity assay protocol.

(For Radiometric Assay Protocol on this product please see pg. 2)

Figure 3. ADP- Glo™ Assay Data

The specific activity of FGFR1 was determined to be **270nmol** /min/mg as per activity assay protocol.

(For ADP-Glo™ Assay Protocol on this product please see pg. 3)

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: F04-11G-10)

Active FGFR1 ($0.1\mu g/\mu l$) diluted with Kinase Dilution Buffer IV (Catalog #: K24-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active FGFR1 for optimal results).

Kinase Dilution Buffer IV (Catalog #: K24-09)

Kinase Assay Buffer II (Catalog #: K02-09) diluted at a 1:4 ratio (5X dilution) with 50 ng/µl BSA solution.

Kinase Assay Buffer II (Catalog #: K02-09)

Buffer components: 25mM MOPS pH 7.2, 12.5mM β -glycerol-phosphate, 20mM MgC1₂, 12.5mM MnC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[33P]-ATP Assay Cocktail

Prepare 250 μ M [33P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution (Catalog #: A50-09), 100 μ l [33P]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer II (Catalog #: K02-09). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200 μ l aliquots at -20°C.

Substrate (Catalog #: P61-58)

Poly (Glu_4,Tyr_1) synthetic peptide substrate diluted in distilled H_2O to a final concentration of 1mg/ml.

Assay Protocol

- Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active FGFR1, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
- Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20µl:

Component 1. 10µl of diluted Active FGFR1 (Catalog #F04-11G-10)

Component 2. 5μ I of 1 mg/ml stock solution of substrate (Catalog #P61-58)

Component 3. 5µl distilled H₂O (4°C)

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H_2O .
- Step 5. Initiate the reaction by the addition of 5µl [3³P]-ATP Assay Cocktail bringing the final volume up to 25µl and incubate the mixture in a water bath at 30°C for 15 minutes.
- Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20μl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 8. Count the radioactivity (cpm) on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5µl [33P]-ATP / pmoles of ATP (in 5µl of a 250µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/μg or nmol/min/mg)

Corrected cpm from reaction / [(SA of 33 P-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume) / (Spot Volume)]

ADP-Glo™ Activity Assay Protocol

Reaction Components

FGFR1 Kinase Enzyme System (Promega, Catalog #:V2991)

FGFR1, Active, $10\mu g$ ($0.1\mu g/\mu l$) Poly (Glu₄,Tyr₁) peptide, substrate, 1ml (1mg/ml) Reaction Buffer A (5X), 1.5ml DTT solution (0.1M), 25 μl ADP-Glo[™] Kinase Assay Kit (Promega, Catalog #: V9101)

Ultra Pure ATP solution, 10 mM (0.5ml) ADP solution, 10 mM (0.5ml) ADP-Glo™ Reagent (5ml) Kinase Detection Buffer (10ml) Kinase Detection Substrate (Lyophilized)

Reaction Buffer A (5X)

200mM Tris-HCl, pH 7. 5, 100mM MgCl₂ and 0.5 mg/ml BSA.

Assay Protocol

The FGFR1 assay is performed using the FGFR1 Kinase Enzyme System (Promega; Catalog #: V2991) and ADP-GloTM Kinase Assay kit (Promega; Catalog #: V9101). The FGFR1 reaction utilizes ATP and generates ADP. Then the ADP- GloTM Reagent is added to simultaneously terminate the kinase reaction and deplete the remaining ATP. Finally, the Kinase Detection Reagent is added to convert ADP to ATP and the newly synthesized ATP is converted to light using the luciferase/luciferin reaction. For more detailed protocol regarding the ADP-GloTM Kinase Assay, see the technical Manual #TM313, available at www.promega.com/protocols.

- Step 1. Thaw the ADP-Glo™ Reagents at ambient temperature. Then prepare Kinase Detection Reagent by mixing Kinase Detection Buffer with the Lyophilized Kinase Detection Substrate. Set aside.
- Step 2. Thaw the components of FGFR1 Enzyme System, ADP and ATP on ice.
- Step 3. Prepare 1ml of 2X Buffer by combining 400µl Reaction Buffer A, 1µl DTT and 599µl of dH₂0.
- Step 4. Prepare 1ml of 250μM ATP Assay Solution by adding 25μl ATP solution (10mM) to 500μl of 2X Buffer and 475μl of dH₂0.
- Step 5. Prepare diluted FGFR1 in 1X Buffer (diluted from 2X buffer) as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active FGFR1 for optimal results).
- Step 6. In a white 96-well plate (Corning Cat # 3912), add the following reaction components bringing the initial reaction volume up to 20µl:

Component 1. 10µl of diluted Active FGFR1

Component 2. 5µl of 1mg/ml stock solution of substrate

Component 3. 5µl of 2X Buffer

- Step 7. Set up the blank control as outlined in step 6, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H_2O .
- Step 8. At the same time as the FGFR1 kinase reaction, set up an ATP to ADP conversion curve at 50µM ATP/ADP range as described in the *ADP-Glo™ Kinase Assay* technical Manual #TM313.
- Step 9. Initiate the FGFR1 reactions by the addition of 5μ l of 250μ M ATP Assay Solution thereby bringing the final volume up to 25μ l. Shake the plate and incubate the reaction mixture at 30° C for 15 minutes.
- Step 10. Terminate the reaction and deplete the remaining ATP by adding 25µl of ADP-Glo™ Reagent. Shake the 96-well plate and then incubate the reaction mixture for another 40 minute at ambient temperature.
- Step 11. Add 50µl of the Kinase Detection Reagent, shake the plate and then incubate the reaction mixture for another 30 minute at ambient temperature.
- Step 12. Read the 96-well reaction plate using the Kinase-Glo™ Luminescence Protocol on a GloMax plate reader (Promega; Cat# E7031).
- Step 13. Using the conversion curve, determine the amount of ADP produced (nmol) in the presence (step 6) and absence of substrate (Step 7) and calculate the kinase specific activity as outlined below. For a detailed protocol of how to determine nmols from RLUs, see the Kinase Applications Database at www.promega.com/resources/tools

Kinase Specific Activity (SA) (nmol/min/mg)

(ADP (step 6) - ADP (Step 7)) in nmol) / (Reaction time in min)*(Enzyme amount in mg)